Algebra 2

10-07 Using Trigonometric Identities

Trigonometric Identity

• Statement showing relationship between two quantities that are always ______

Reciprocal Identities

$$\sin u = \frac{1}{\csc u} \qquad \qquad \csc u = \frac{1}{\sin u}$$

$$\cos u = \frac{1}{\sec u} \qquad \qquad \sec u = \frac{1}{\cos u}$$

$$\tan u = \frac{1}{\cot u} \qquad \qquad \cot u = \frac{1}{\tan u}$$

Quotient Identities

$$\tan u = \frac{\sin u}{\cos u} \qquad \cot u = \frac{\cos u}{\sin u}$$

Pythagorean Identities

$$\sin^2 u + \cos^2 u = 1$$
$$\tan^2 u + 1 = \sec^2 u$$
$$1 + \cot^2 u = \csc^2 u$$

Even/Odd Identities

$$cos(-u) = cos u$$
 $sec(-u) = sec u$
 $sin(-u) = -sin u$ $tan(-u) = -tan u$
 $csc(-u) = -csc u$ $cot(-u) = -cot u$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - u\right) = \cos u \qquad \cot\left(\frac{\pi}{2} - u\right) = \tan u$$

$$\cos\left(\frac{\pi}{2} - u\right) = \sin u \qquad \sec\left(\frac{\pi}{2} - u\right) = \csc u$$

$$\tan\left(\frac{\pi}{2} - u\right) = \cot u \qquad \csc\left(\frac{\pi}{2} - u\right) = \sec u$$

Given that $\sin \theta = -\frac{5}{13}$ and $\pi < \theta < \frac{3\pi}{2}$, find the values of the other five trigonometric functions of θ .

 $\sin x \cot x$

Verify Trigonometric Identities

- Show that trig identities are true by turning ______ into the ______
- Guidelines
- 1. Work with _____ at a time. Start with the more _____ side.
- 2. Try _____, add _____, etc.
- 3 Use
- 4. If the above doesn't work, try rewriting in _____ and ____
- 5. Try_____!

Verify	$\frac{\sin x}{\perp}$	$\frac{\cos x}{2}$ – 1
		$\sec x - 1$

$$\cos\left(\frac{\pi}{2} - x\right)\cot x = \cos x$$

575 #1, 3, 5, 7, 9, 11, 14, 15, 17, 19, 21, 23, 25, 33, 35, 39, 41, 42, 45, 46 = 20